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The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown
is studied through numerical computations. These unique simulations are guided
by a recent rigorous theory on this subject presented by Wang & Rusak (1997a).
Using the unsteady and axisymmetric Euler equations, the nonlinear dynamics of
both small-and large-amplitude disturbances in a swirling flow are described and
the transition to axisymmetric breakdown is demonstrated. The simulations clarify
the relation between our linear stability analyses of swirling flows (Wang & Rusak
1996a, b) and the time-asymptotic behaviour of the flow as described by steady-
state solutions of the problem presented in Wang & Rusak (1997a). The numerical
calculations support the theoretical predictions and shed light on the mechanism
leading to the breakdown process in swirling flows. It has also been demonstrated
that the fundamental characteristics which lead to vortex instability and breakdown
in high-Reynolds-number flows may be calculated from considerations of a single,
reduced-order, nonlinear ordinary differential equation, representing a columnar flow
problem. Necessary and sufficient criteria for the onset of vortex breakdown in a
Burgers vortex are presented.

1. Introduction
The breakdown of vortex cores is a remarkable phenomenon in fluid dynamics

which refers to the significant change in structure of high-Reynolds-number vortex
flows with a high level of swirl. The breakdown phenomenon is characterized by the
sudden appearance of a free stagnation point in the flow followed by large regions of
flow reversal and increased turbulence levels. Experimental results of swirling flows
in pipes exhibit several distinct forms of vortex breakdown. They range from weak
helical disturbances to the stronger, spiral or nearly axisymmetric types (see, for
example, Sarpkaya 1971; Leibovich 1978, 1984; Delery 1994; Bruecker & Althaus
1995; Sarpkaya 1995b). The various types of breakdown may develop in flows with
the same Reynolds number, with only a small change in the swirl ratio (ratio of
circumferential speed to axial speed) of the flow. This special behaviour of rotating
flows is still considered a basic, largely unexplained phenomenon in modern fluid
dynamics with a variety of technological applications and scientific interest.

Several review papers on this subject have been presented, including Hall (1972),
Leibovich (1978, 1984), Escudier (1988), Delery (1994), Althaus, Bruecker & Weimer
(1995) and Sarpkaya (1995a). These papers show that several possible explanations
have been advanced, each clarifying some aspects of the problem. However, most of
the previous efforts to explain vortex breakdown are based on local analyses and,
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therefore, mask important information on the possible time evolution of swirling
flows. Also, the relationship between the various theoretical and numerical solutions
has never been fully clarified. Until recently, no clear global criteria for the occurrence,
stability or dynamics of vortex breakdown states have been provided. The study in
this paper is motivated by this complicated phenomenon.

A variety of numerical studies have been carried out over the last twenty five years
to simulate the vortex breakdown phenomenon. Of specific interest to this paper are
the investigations of axisymmetric vortex breakdown in a pipe using the axisymmetric
Euler or Navier–Stokes equations. These works include Kopecky & Torrance (1973),
Grabowski & Berger (1976), Krause (1985), Hafez & Salas (1985), Menne (1988), Salas
& Kuruvila (1989) and Spall & Gatski (1991). These numerical studies demonstrated
that axisymmetric vortex breakdown states may be successfully simulated and show
some similarity with the physical situation and the experimental data.

In an effort to understand the complicated phenomenon of vortex breakdown,
Beran & Culick (1992) constructed numerical solutions of a swirling flow in a pipe
using the axisymmetric and steady Navier–Stokes equations. Numerical continuation
methods were used in this work to derive the bifurcation diagram of solutions for
fixed profiles of the axial and swirl velocity components entering the pipe as the swirl
level of the incoming flow was changed. A schematic diagram of their results is given
in figure 1 of Wang & Rusak (1997a). In this figure ω represents the level of swirl
of the flow entering the pipe and min(w(x, 0)) is the minimum axial speed found on
the vortex axis in a given solution. When the Reynolds number was sufficiently large,
Beran & Culick (1992) found that there exist two limit points of the incoming swirl
level, ω, which connect three distinct branches of steady-state solutions. Along the
branch of solutions (a) ω increases up to the first limit point and this branch describes
near-columnar flows along the pipe. The branch of solutions (b) starts from the first
limit point and ends at the secondary limit point; along this branch the incoming
swirl is reduced. Solutions along this fold describe a swirling flow with a localized
standing wave that develops into a localized separation zone as the swirl approaches
the secondary limit point. The branch of solutions (c) starts from the secondary limit
point; along this branch the incoming swirl is increased and solutions describe a
large separation zone in the swirling flow. Beran & Culick (1992) indicated that there
may be a possible relation between the first limit point in their computations and the
critical swirl, ωB , defined by Benjamin (1962) (see figure 1 in Wang & Rusak 1997a).

Recently, Lopez (1994) and Beran (1994) studied the dynamics of swirling flows
using the unsteady and axisymmetric Navier–Stokes equations. Both of these studies
showed that the aforementioned branches of solutions (a) and (c) are stable to small,
axisymmetric disturbances, whereas the solutions along branch (b) (in the fold) are
unstable. Steady-state solutions along branch (b) cannot develop in a dynamical
process starting from any initial swirling flow. Moreover, if a solution along the fold
is given as the initial state, it will evolve in time into one of the other (stable) states
along branches (a) or (c).

In an inviscid, steady-state approach, relevant to the present work, Keller, Egli
& Exley (1985) described the axisymmetric vortex breakdown in an infinitely long
straight pipe as an open stagnation zone of free boundaries that appears in the base
vortex flow. Their solution describes a transition from a base, upstream, columnar
state described by the Rankine vortex, to another, downstream, columnar state that
has the same ‘flow force’ (resulting from the conservation of axial momentum along
the pipe); both states are solutions of the same columnar problem. However, a careful
understanding of this solution shows that when the vortical core radius of the base
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(upstream) state is fixed, the solution is limited only to a specific value of the swirl
ratio, defined later in this paper as ω0, where ω0 < ωB . For this special solution
min(w(x, 0)) = 0 (see figure 1 in Wang & Rusak 1997a).

The reviews of the theoretical and numerical studies on vortex stability and break-
down (see Leibovich 1978, 1984; Althaus et al. 1995; Ash & Khorrami 1995; Rusak
& Wang 1996a) demonstrate that no previous analyses of swirling flows can provide
clear insight into the special behaviour of the numerical solutions of Beran & Culick
(1992), Beran (1994) and Lopez (1994). The relation between the critical swirl and the
first limit point as suggested by Beran & Culick (1992) is not completely understood.
Also, there is no explanation for the existence of the secondary limit point that
appears in the viscous computations and its possible relation to the special solution
of Keller et al. (1985). It should also be emphasized that none of the known stability
analyses can shed any light on the specific stability characteristics of the solutions
described by Beran (1994) and Lopez (1994).

Wang & Rusak (1997a) have recently presented a novel theoretical approach
which describes the axisymmetric vortex breakdown process (see also Rusak & Wang
1996a, b and Wang & Rusak 1996c). This approach, employing the unsteady Euler
formulation, examines the dynamics of axisymmetric swirling flows in a straight pipe
of finite length. The analysis concentrates on studying the initial growth tendency
of a perturbation in a swirling flow as it relates to the stability characteristics of
the flow (see Wang & Rusak 1996a, b), as well as the relation of the time-asymptotic
behaviour of the flow to the steady-state solutions. The results are established through
a rigorous mathematical analysis and provide a fundamental, and nearly complete,
theoretical understanding of the dynamics of axisymmetric swirling flows. The stability
analyses together with the steady-state solutions suggest a consistent explanation
of the mechanism leading to the axisymmetric vortex breakdown process in high-
Reynolds-number flows. This process is the evolution from an initial columnar vortex
flow to another relatively stable and lower-energy equilibrium state of a swirling flow
around a large separation zone. This evolution is a result of the interaction between
disturbances propagating upstream and the incoming flow to the pipe which leads to
a loss of stability of the base columnar state when the swirl ratio of the incoming
flow is near or above the critical level. The effect of slight viscosity as well as small
pipe divergence on the flow dynamics and the transition to vortex breakdown has
been recently studied by Wang & Rusak (1997b) and Rusak, Judd & Wang (1997).

The theoretical effort of Wang & Rusak (1997a) provides a framework in which
computations of the vortex breakdown process can be conducted. We present in this
paper numerical simulations of the axisymmetric and inviscid vortex breakdown in a
pipe that are guided by this theory. The outline of the paper is as follows. A summary
of the mathematical problem and the theoretical approach is given in § 2. The method
of computing the bifurcation points and its application to the Burgers vortex model
are discussed in § 3. Inviscid simulations of the axisymmetric vortex breakdown in
a pipe are described in § 4. In § 5 we summarize the dynamics of an axisymmetric
swirling flow in a pipe and provide necessary and sufficient criteria for the onset of
breakdown in a Burgers vortex. It should be emphasized that the present numerical
simulations use well-known finite difference techniques to solve the time-dependent
flow problem and the major objective in this paper is to demonstrate the relation
between the numerical simulations and the theoretical studies of Wang & Rusak
(1996a, b, 1997a).

The present approach is limited to the axisymmetric and inviscid dynamics of
swirling flows. This may be a problematic limitation of the theory since numerous
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experimental and numerical results show the existence of helical instabilities in the
wake of the axisymmetric bubble zone and, more specifically, in certain cases, the
evolution of the nearly axisymmetric breakdown into a spiral type of breakdown (see,
for example, the experimental works of Sarpkaya 1971; Leibovich 1984 and Bruecker
& Althaus 1995 and the numerical studies of Tromp & Beran 1996, 1997; Spall 1996;
Visbal 1996 and Cary, Darmofal & Powell 1997).

It can be shown, however, that according to normal-mode stability analyses, in
the range of swirl of interest (near the critical swirl, ωB of Benjamin 1962, or its
correction for a finite length pipe given by Wang & Rusak 1997a, denoted as ω1)
the base columnar vortex flows are usually neutrally stable to both axisymmetric
and three-dimensional infinitesimal disturbances. For example, the review paper of
Leibovich (1984, figure 8) provides instability regions for the Q-vortex model and
shows that for relevant vortex flows these are much below the critical swirl, ω1. Also,
inlet vortex flows to a pipe that later experienced breakdown are usually stable to
both axisymmetric and three-dimensional small disturbances. Moreover, as we find
in the present computations, these instability regions are even below the critical
level, ω0, for large-amplitude axisymmetric disturbances, described in Wang & Rusak
(1997a). Therefore, we find that for relevant experimental vortex flows (such as those
reported in Leibovich 1984) large-amplitude disturbances or the breakdown zones
cannot evolve from an infinitesimal periodic disturbance on a columnar flow. It is
only the specific inviscid axisymmetric instability mechanism, recently revealed by
Wang & Rusak (1996a) which is related to a non-periodic mode of disturbance, that
actually exists at the swirl levels of interest in such high-Reynolds-number flows. This
special instability mechanism depends on the swirl separation from the critical swirl
ω1 and is demonstrated in the present computations and matches with our theoretical
predictions.

Moreover, we use the unsteady simulations to follow the nonlinear dynamics of
small- or large-amplitude disturbances and, specifically, the unstable axisymmetric
disturbance as it evolves in time into the axisymmetric breakdown. We find that
the time-asymptotic solutions resulting from the present simulations match with the
steady-state solutions of the axisymmetric Euler equations described in Wang &
Rusak (1997a). The current numerical calculations provide, in this way, the transient
nonlinear dynamics linking our new stability results (Wang & Rusak 1996a, b) and our
new steady-state results (Wang & Rusak 1997a). They help to clarify the appearance
of the axisymmetric breakdown process as it is related to both issues. They also
demonstrate the nature of the swirl level, ω0 (of Keller et al. 1985), as a critical state
for finite-amplitude axisymmetric disturbances, related to the secondary limit point
found in the Navier–Stokes computations of Beran & Culick (1992).

The present numerical studies also help to identify the nature of the inviscid flow
in the breakdown zone and the relevant continuation method to be used inside this
zone in the study of steady-state solutions of the Euler equations. There may exist an
infinite number of continuation methods in the steady and inviscid framework, but
it is the flow dynamics of a perturbed columnar vortex state that actually clarifies
the nature of the separation zone as a stagnation zone. It should be emphasized that
this flow characteristic appears naturally, with no special assumptions with regard
to the inviscid dynamics of the flow. It also matches with various experimental and
numerical results on high-Reynolds-number vortex flows where it is shown that the
flow is essentially stagnant in the breakdown zone (see, for example, Escudier 1988;
Lopez 1994). In this way the present numerical simulations help to complete the
relationship between our stability and steady-state analyses of swirling flows and
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provides a nearly complete description of solutions of the axisymmetric and inviscid
problem.

Finally, we comment on the importance of the axisymmetric analysis even in
flow situations where large three-dimensional disturbances dominate the flow. The
experimental results of Sarpkaya (1971), Bruecker & Althaus (1995), and Althaus et
al. (1995) demonstrate the existence of certain swirling flows with nearly axisymmetric
and inviscid dynamics leading to the appearance of axisymmetric breakdown zones.
It is only after the axisymmetric breakdown zone is more or less established in the
swirling flow, that three-dimensional disturbances appear inside the breakdown zone
and its wake. Those disturbances may even become unstable under certain conditions
and grow to finite-amplitude disturbances and unsteady three-dimensional vortical
flows may develop and never settle to a steady state. In some situations the nearly
axisymmetric breakdown state may evolve to a spiral breakdown state as was found
in the experiments of Bruecker & Althaus (1995). Similar behaviour has recently been
described in the numerical simulations using the unsteady Navier–Stokes equations
by Tromp & Beran (1996, 1997), Spall (1996), Visbal (1996) and Cary et al. (1997).

According to our understanding, the three-dimensional disturbances that develop
in the aforementioned flows should be viewed as symmetry-breaking instabilities from
the axisymmetric breakdown states found from our theory, and not from the base
columnar vortex flow. As is already pointed out above, stability analyses show that
in the range of swirl of interest, the base columnar vortex state is usually neutrally
stable to three-dimensional infinitesimal disturbances. Therefore, we may conclude
that there exist relevant swirling flow situations where, for a long time or for some
time period, the transient dynamics is dominated by an axisymmetric and inviscid
behaviour. In some of the situations, the transition from a concentrated vortex to the
axisymmetric breakdown state is a crucial step in the evolution of non-axisymmetric
breakdown states. This point of view clarifies the important role of the mechanism
leading to axisymmetric breakdown studied in this paper, even in situations where
at the end a large-amplitude, non-axisymmetric unsteady disturbance appears in the
flow. We believe that in order to explore the dynamics of three-dimensional swirling
flows it would appear important to extend our theoretical framework to investigate
the evolution of three-dimensional disturbances from columnar states as well as from
the axisymmetric breakdown states found in our study.

2. Theoretical approach
2.1. Mathematical model

An unsteady, axisymmetric, incompressible and inviscid flow with swirl has been
considered in a finite length pipe of unit radius, the centreline of which is the x-axis
and where 0 6 x 6 x0. The axial and radial distances are rescaled with the radius of
the pipe, rt. By virtue of the axisymmetry, a stream function ψ(x, r, t) can be defined
where the radial component of velocity u = −ψx/r, and the axial component of
velocity w = ψr/r. Let y = r2/2, then the azimuthal vorticity η is given by η = rχ
where χ = −(ψyy+ψxx/2y). The circulation function K is defined as K = rv where v is
the circumferential velocity component. The equations which connect the development
in time (t) of the stream function ψ, the function χ and the circulation function K
may be given by (see, for example, Szeri & Holmes 1988)

Kt + {ψ,K} = 0, χt + {ψ, χ} =
1

4y2
(K2)x on 0 6 x 6 x0, 0 6 y 6 1/2. (1)
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Here the brackets {ψ,K} and {ψ, χ} are defined by

{ψ,K} = ψyKx − ψxKy, {ψ, χ} = ψyχx − ψxχy. (2)

We study the development of the flow with certain conditions posed on the
boundaries. For all time, t, we set ψ(x, 0, t) = 0 to satisfy the axisymmetric condition
along the pipe centreline, y = 0, and ψ(x, 1/2, t) = w0 along the pipe wall, y = 1/2,
to describe the total mass flux across the pipe. Also, for all time, the incoming flow
along the pipe inlet is given by the axial flow and circulation as

ψ(0, y, t) = ψ0(y), K(0, y, t) = ωK0(y). (3)

Here ω reflects the swirl level of the incoming flow. We also consider the case where
ψxx(0, y, t) = 0 to fix the azimuthal vorticity along the inlet at any time t,

χ(0, y, t) = −ψ0yy. (4)

We allow the inlet state a certain degree of freedom to develop a radial velocity,
to reflect the upstream influence of disturbances that have the tendency to manifest
themselves as instabilities. The boundary conditions along the pipe outlet section
depend on the physical situation. However, boundary conditions that result in a well
posed mathematical problem may relate to certain physical situations of interest. The
method given in this paper is general and can handle various conditions, but in order
to demonstrate our idea we concentrate on specific outlet conditions. To this end, we
specify only one condition along the pipe outlet. We assume no radial speed along
x = x0, i.e.

ψx(x0, y, t) = 0. (5)

Similar boundary conditions have been considered by Salas & Kuruvila (1989), Beran
& Culick (1992), Beran (1994), Lopez (1994) and Tromp & Beran (1996, 1997) in
their numerical simulations using the Navier–Stokes equations and by Buntine &
Saffman (1995) in their theoretical study of steady swirling flows in a finite-length
diverging pipe using the Euler equations. They may also reflect the physical situation
as reported in the experiments of Bruecker & Althaus (1995).

The problem defined by equations (1)–(5) is well posed and describes the evolution
of a swirling flow in a finite-length pipe. It is strongly expected that starting from
some relevant initial conditions for the stream function, circulation and azimuthal
vorticity, such as a columnar state along the pipe, i.e.

ψ(x, y, 0) = ψ0(y), K(x, y, 0) = ωK0(y), χ(x, y, 0) = −ψ0yy (6)

the flow will develop uniquely in time after a disturbance is introduced to the flow.
Drazin & Howard (1965) proved uniqueness of a time-dependent solution of the
Euler equations for similar boundary conditions and any initial state. Moreover, we
will show that the axisymmetric vortex breakdown is primarily related to the swirl
level, ω, of the incoming flow.

2.2. Summary of the theoretical study

The theory is composed of two major steps:
(a) Global variational analysis of steady-state solutions of the axisymmetric Euler

equations (1) (resulting in the Squire–Long equation). In this analysis, a functional,
E(ψ) (see details later in equation (10)), whose stationary points correspond to
solutions of the Squire-Long equation, was studied in detail. This variational principle
was first introduced into the study of vortex breakdown by Benjamin (1962) and was
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also used by Keller et al. (1985). For more details of this approach see Wang & Rusak
(1997a) and specifically figures 13 and 15 therein.

(b) Linear stability analysis of these various steady-state solutions (see Wang &
Rusak 1996a, b).

The theory shows the following.
(i) As the swirl level of the incoming flow is increased, there exist two bifurcation

points ω0 + ε(x0) and ω1. Here, ω0 < ω1 and ε(x0) is a small number that reflects
the effect of the pipe length, and tends to zero as x0 tends to infinity (see figure 13
in Wang & Rusak 1997a). ω1 is the critical swirl for a flow in a finite pipe. When
the pipe length is increased, ω1 approaches Benjamin’s (1962) critical swirl ωB . The
details of the methods of computing ω0 and ω1 and the physical meaning of these
special swirl levels are given in §3.

(i)(a) When ω < ω0, only a columnar flow solution exists, which is the global
minimizer of E. ω0 is a bifurcation point where a breakdown solution may develop
for the first time. When ω > ω0 + ε(x0) three solutions exist. One is a columnar
flow solution which now becomes a local minimizer of E. Two other solutions, a
global minimizer and a min-max solution, bifurcate at ω0, and both describe vortex
breakdown solutions. It can be shown that the min-max solution describes a swirling
flow with a localized wave similar to the solitary wave solution of Leibovich &
Kribus (1990). The global minimizer solution describes a swirling flow around an
open stagnation zone which is a transition along the pipe axis from the given inlet
state to a certain outlet state. The outlet state is a global minimizer solution of
the ODE resulting from the Squire–Long equation for the columnar (x-independent)
problem.

(i)(b) As ω → ω−1 , the branch of min–max solutions approaches the branch
of columnar flows and ω1 is a transcritical bifurcation point. When ω > ω1 the
columnar flows become min-max solutions and another branch of local minimizer,
non-columnar, flow solutions bifurcates at ω1 (see figure 13 in Wang & Rusak 1997a).

(ii) Linear stability analysis of axisymmetric disturbances using (1)–(5) shows (see
figure 15 in Wang & Rusak 1997a) that the critical swirl level, ω1, is also a point
of exchange of stability; the branches of local minimizers of E bifurcating at ω1

have an asymptotically stable mode of disturbance whereas the min-max solutions
are unstable. Specifically, an unknown mechanism of instability has been revealed by
Wang & Rusak (1996a) for the branch of columnar swirling flows in a finite length
pipe. This instability mechanism relates the upstream propagation of disturbances
along the vortex core and the nature of the inlet flow. It has been shown that the
disturbances are convected out of the pipe and columnar rotating flows are linearly
stable when ω < ω1. However, the disturbances tend to move upstream, interact
with the inlet flow, grow and destabilize the columnar state when ω > ω1. Such a
mechanism cannot be predicted by any of the previously known stability analyses
of swirling flows and is crucial to the understanding of the axisymmetric vortex
breakdown phenomenon which will be demonstrated in our numerical simulations
described in §4.

(iii) These results suggest an explanation for the physical mechanism leading to
the axisymmetric vortex breakdown phenomenon in a swirling flow in a finite length
pipe: it is a transition phenomenon, that may occur only when ω > ω0 + ε(x0), from
a columnar vortex flow, that loses its stability margin as ω tends ω1, into another
steady and stable global minimizer solution that is a strong attractor. When ω > ω1,
any perturbation will induce this transition. The swirl level ω0 is a threshold level for
a steady and stable axisymmetric breakdown and the condition ω > ω0 is a necessary
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condition for breakdown to appear. The condition ω > ω1 is a sufficient condition
for breakdown.

The theory provides for the first time a consistent explanation of the physical
mechanism leading to the axisymmetric vortex breakdown phenomenon in a pipe as
well as the conditions for its occurrence. Also, as demonstrated in Rusak & Wang
(1996a, b), the theory that is based on the analysis of solutions of the time-dependent
problem (1)–(6), unifies previous theoretical approaches to vortex breakdown, fills
the void between those approaches, constructs the relationship between stability to
axisymmetric disturbances and criticality of swirling flows and sheds light on the
numerical simulations of this phenomenon (Rusak & Wang 1996a). For the detailed
mathematical analysis of the phenomenon see Wang & Rusak (1997a, 1996a, b).

In this paper we first demonstrate the methods to calculate the bifurcation points
ω0 and ω1 of the steady-state problem resulting from (1)–(6) where the inlet state is
described by the Burgers vortex model:

ψ0(y) = y, ωK0(y) = ω(1− e−2βy). (7)

Here ω is the swirl level and β is related to the size of the vortical core, rc/rt =
1.12/β1/2. It is shown that ω0(β) can be calculated from solutions of the ODE resulting
from the x-independent Squire–Long equation, and that ω1(β) can be calculated from
the linearized ODE. Subsequently, we demonstrate by numerical simulations based on
equations (1)–(7) the relation between stability and criticality of a columnar vortex
flow in a finite-length pipe and provide insight into the dynamical process of the
transition from columnar flow states to breakdown states. These breakdown states
correspond to the previously discussed global minimizer solutions predicted by the
theory. Results are summarized in terms of basic criteria for the development of
axisymmetric vortex breakdown in a swirling flow given by the Burgers vortex model.

3. Calculation of ω0 and ω1 for a Burgers vortex
Wang & Rusak (1997a) analysed solutions of the Squire–Long equation (SLE)

(resulting from (1) for a steady-state case and also known as the Bragg–Hawthorne
1950 equation)

ψyy + ψxx/2y = H ′(ψ)− I ′(ψ)/2y on 0 6 x 6 x0, 0 6 y 6 1/2, (8)

with boundary conditions

ψ(x, 0) = 0, ψ(x, 1/2) = 1/2,

ψ(0, y) = ψ0(y), K(0, y) = ωK0(y), ψx(x0, y) = 0

}
(9)

that describe the development of a steady flow in a pipe of length x0. Here, H =
p/ρ + (u2 + w2 + v2)/2 is the total head function, and I = (rv)2/2 is the extended
circulation, both of which are functions of ψ only. For more details on (8) see
Batchelor (1967).

Solutions of the SLE are well-known to correspond to the stationary points of the
following functional, E(ψ), (see also Keller et al. 1985)

E(ψ) =

∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+
ψ2
x

4y
+H(ψ)− I(ψ)

2y

)
dy dx. (10)

It has been found that the variational functional E(ψ) has a complicated behaviour as
the incoming swirl ω is varied. Through a careful estimation of the various integrals
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in (10) Wang & Rusak (1997a) proved the existence of the global minimizer ψg(x, y)
of E(ψ) when both H(ψ) and I(ψ) are bounded, reflecting the boundedness of energy
and circulation in the pipe. Wang & Rusak (1997a) have also shown that the global
minimizer solution ψg(x, y) is dominated by the global minimizer solution ψs(y) of
the columnar problem (where ψx = ψxx = 0)

ψyy = H ′(ψ)− I ′(ψ)/2y, ψ(0) = 0, ψ(1/2) = 1/2 (11)

with the corresponding variational functional

E(ψ) =

∫ 1/2

0

(
ψ2
y

2
+H(ψ)− I(ψ)

2y

)
dy. (12)

For a solution of (11) this functional represents the flow force as defined by Benjamin
(1962). Wang & Rusak (1997a) have found that there exists a certain swirl level, ω0,
such that when ω < ω0 the global minimizer solution of the ODE (11) is ψs(y) = ψ0(y),
which implies that the global minimizer solution of the PDE (8) is the columnar flow
ψg(x, y) = ψ0(y). However, when ω > ω0 the global minimizer solution ψs(y) of the
ODE (11) is quite different than ψ0(y), with E(ψs(y)) < E(ψ0(y)), and contains a
separation region in the domain 0 6 y 6 ya. Therefore, the global minimizer of the
PDE (8) describes a non-columnar vortex breakdown solution along the pipe which is
a transition from an inlet state ψg(0, y) = ψ0(y) to an outlet state ψg(x0, y) = ψs(y) and

where the difference E(ψ0(y)) − E(ψs(y)) =
∫ 1/2

0
ψ2
x(0, y)/2y dy creates a radial flow

along the pipe inlet. At the swirl level ω0 we have E(ψs(y)) = E(ψ0(y)). It should be
noted that Keller et al. (1985) used a similar technique to compute their special vortex
breakdown solutions for an inlet state described by the Rankine vortex. However, for
a fixed vortical core radius, their solutions are limited only to the swirl level defined
in this paper as ω0.

It should also be noticed that the global minimizer of E(ψ) depends on the choice of
a continuation model in the separation zone. Different choices will result in different
global minimizer solutions of the ODE. However, since we look for the solution of
the ODE (11) which represents the outlet state of the global minimizer solution of
the PDE (8), we have to choose a continuation model that is relevant to the solution
of the dynamical problem given by (1)–(6). It is expected that solutions of (1)–(5)
with initial conditions (6) will evolve with no reversed flow along the outlet or inside
the domain. The numerical simulations based on (1)–(6) described in §4 support this
idea and clearly show the establishment of a stagnation zone when ω > ω0 as time
tends to infinity. Regions of essentially stagnant flow have also been found in the
numerical simulations of Lopez (1994) based on the Navier–Stokes equations. It,
therefore, seems plausible to choose a stagnation model in the search for the global
minimizers of both the PDE (8) and the ODE (11). A similar choice was made by
Keller et al. (1985) in their special inviscid vortex breakdown solutions.

In the case of the Burgers vortex model (7), the following relations are found,

I ′(ψ) = 2βω2(1− e−2βψ)e−2βψ, H ′(ψ) = I ′(ψ)/2ψ

and (11) becomes

ψyy = βω2(1− e−2βψ)e−2βψ(1/ψ − 1/y), ψ(0) = 0, ψ(1/2) = 1/2. (13)

It can be shown that solutions of (13) and their first derivatives are continuous.
For fixed values of β and ω we numerically integrate (13) using a standard Runge–
Kutta integration scheme of Mathematica. We look for solutions of (13) where,
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Figure 1. Solutions of (13) for a Burgers’ vortex model with β = 4.0.

specifically, 0 6 ψ 6 1/2 in the domain 0 6 y 6 1/2 and where a stagnation region
with ψ = 0 may appear in the solution in a finite region 0 6 y 6 ya and where
ψ(ya) = ψy(ya) = 0. Equation (13) together with these conditions at y = ya completely
specify a free boundary value problem from which the size of the stagnation zone,
ya, may be determined as a function of the swirl level. Details of the computational
methods to solve this problem are given in Whiting (1996). It is important to notice
that there exist other solutions of (13) with reversed flow regions where ψ < 0 in
a certain region of the domain (0, 1/2) once another continuation model is used.
However, those solutions are not relevant to the steady-state solutions found from
the time-dependent and inviscid flow problem described by (1)–(6).

The solutions of (13) for various values of ω are presented in figure 1 for β = 4.0.
Computations for other values of β show similar results (see Whiting 1996). We want
to emphasize that these new, non-trivial solutions of the SLE (11) are of great interest
since they contain information that helps to clarify the breakdown solutions of the
PDE (8). We find that, in addition to the base solution ψ = y, there exist two other
types of solutions that meet the above requirements: type I, where ψ(0) = 0 but
ψy(0) > 0 and type II, where ψ = 0 in the domain 0 6 y 6 ya (stagnation region)
and ψy(ya) = 0. We also find that there exists a certain level of swirl ω∗(β) where for
ω < ω∗(β) only the base solution exists. The swirl level ω∗(β) is a bifurcation point
of solutions of (13). At ω = ω∗(β) we find two solutions: one is the base solution
and the other is a special solution of type II. For example, when β = 4.0 we have
ω∗ = 0.7084 . . . . When ω is slightly greater than ω∗(β) three solutions are found: one
is the base solution and the other two, ψ1(y;ω) and ψ2(y;ω) have large and small
stagnation regions, respectively. When ω is further increased the branch of ψ1(y;ω)
solutions of type II describes larger stagnation zones whereas the branch of ψ2(y;ω)
solutions with the small stagnation zone changes naturally into solutions of type I.
The latter branch approaches the base solution as ω approaches the certain critical
bifurcation point, ωB , defined by Benjamin (1962). The critical level of swirl is the
first eigenvalue of the linearized problem resulting from (13),

φyy −
(
ψ0yyy

ψ0y

− ω2 K0K0y

2y2ψ2
0y

)
φ = 0, φ(0) = 0, φ(1/2) = 0. (14)

This problem can also be solved numerically for any β using a standard eigenvalue
solver based on a central difference approximation of the derivatives. For the case
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Figure 2. Bifurcation diagram of solutions of (13) for a Burgers vortex model with β = 4.0.

where β = 4.0 we find ωB = 0.8829 . . . . As ω is increased above ωB a new branch of
solutions of type I bifurcates at ωB for which ψ0y(0) > 1 (see figure 1).

According to the theory of Wang & Rusak (1997a), for each one of the solutions
of the ODE (13), we calculate the flow force as given by (12) (see Whiting 1996 for
more details of these computations). Results are shown in the bifurcation diagram in
figure 2 for the case β = 4.0. Similar bifurcation diagrams can be constructed for any
value of β. It can be seen that there exists a certain level of swirl defined as ω0 for
which E(ψ1) = E(ψ0). For the case β = 4.0 we find that ω0 = 0.7305 . . . .

When ω∗ < ω < ω0 we find E(ψ2) > E(ψ1) > E(ψ0) whereas for ω0 < ω < ωB
we find E(ψ2) > E(ψ0) > E(ψ1). Following Wang & Rusak (1997a) we can conclude
that ψ0(y) is a global minimizer of E(ψ) when ω < ω0 whereas ψ1(y;ω) is a
global minimizer of E(ψ) when ω > ω0. It can also be shown that in the region
ω0 < ω < ωB , the solution ψ2(y;ω) is a min-max point of E(ψ). When ω > ωB , we
have E(ψ0) > E(ψ2) > E(ψ1) which implies that in this range the base solution, ψ0, is
a min-max point and the solution ψ2 is a local minimizer of E(ψ).

These results show similar behaviour to the theoretical discussion on the Rankine
vortex model described in Wang & Rusak (1997a).

A further discussion of the critical level of swirl is now appropriate. For a swirling
flow in a pipe of length x0, the critical swirl, ω1, is computed according to Wang &
Rusak (1997a) as the first eigenvalue of the linearized problem of (8), i.e.

φyy −
(

π2

8x2
0y

+
ψ0yyy

ψ0y

− ω2 K0K0y

2y2ψ2
0y

)
φ = 0, φ(0) = 0, φ(1/2) = 0. (15)

The problem (15), which is similar to (14), can be solved numerically for any value of
β and x0 using the same technique as above. For example, in the case when β = 4.0
and x0 = 6.0 (to be discussed in §4) we find ω1 = 0.8845 . . . , which is very close to
ωB = 0.8829 . . . . This demonstrates that ω1 tends to Benjamin’s critical swirl level,
ωB , as the length of the pipe is increased.

The bifurcation diagram in figure 2 can now be used to describe the steady-state
solutions of the SLE (8)–(9). When ω < ω0 only one steady-state solution will
develop which describes a columnar flow. When ω0 + ε(x0) < ω < ω1 we may find
three steady-state solutions: one describes a columnar flow and is a local minimizer
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Figure 3. ω0 and ω1 as function of vortex core radius, rc/rt = 1.12/β1/2.

of E(ψ); the second describes a swirling flow with a localized stagnation zone that
disappears as ω is increased toward ω1, and is a min-max point of E(ψ); the third
describes a swirling flow around a stagnation zone and is the global minimizer of
E(ψ). The size of the stagnation region in the last solution corresponds to that of the
separation zone, ya, of the ODE solution ψ1(y;ω) and increases as ω is increased.

We can now conclude, through considerations of the stability analyses of Wang &
Rusak (1996a, b), that only the local and global minimizer solutions are linearly stable
to axisymmetric disturbances whereas the min-max solutions are unstable. Therefore,
with regard to solutions of the dynamical problem defined by (1)–(6) we find that
when ω < ω0, only one steady-state solution, which is a columnar swirling flow, can
develop. When ω0 < ω < ω1, two steady-state solutions may develop depending on
the initial disturbances to the base flow as given by (6). When ω > ω1 we find that
the time-dependent solution of (1)–(6) will always develop into the steady breakdown
state described by the global minimizer solution of (8). We can infer that steady
breakdown solutions can be found only when ω > ω0 and when ω > ω1 such
breakdown solutions will always develop. The values of the swirl ratio vmax/w0 for the
Burgers vortex model (where vmax = ωβ1/2(1− exp(−1.122))/1.12 and w0 = ψ0y = 1),
that correspond to ω0 and ω1, as function of the vortex core radius over the pipe
radius, rc/rt = 1.12/β1/2, are presented in figure 3. This figure provides guiding criteria
for the appearance of axisymmetric breakdown in a Burgers vortex coming into a
pipe and is used in the following computations.

The simulations in the next section are guided by the theoretical results and
demonstrate the expected behaviour of time-dependent solutions of (1)–(6) for various
swirl levels of the incoming flow.

4. Inviscid simulations of axisymmetric vortex breakdown in a pipe
In this section we present numerical simulations of the time-dependent problem

described by (1)–(6) where the inlet swirling flow is given by the Burgers vortex model
(7). Since this problem is dominated by the propagation of disturbances in the axial
direction (both downstream and upstream depending on the swirl level) we choose
a suitable finite-difference scheme based on the Lax method. To accomplish this, a
uniform mesh is employed for the spatial domain (0 6 x 6 x0, 0 6 y 6 1

2
) and the

resulting discretized equations are

Kn+1
i,j = 0.5(Kn

i+1,j +Kn
i−1,j)− d[(ψni,j+1 − ψni,j−1)(K

n
i+1,j −Kn

i−1,j)

−(ψni+1,j − ψni−1,j)(K
n
i,j+1 −Kn

i,j−1)], (16)
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χn+1
i,j = 0.5(χni+1,j + χni−1,j)− d[(ψni,j+1 − ψni,j−1)(χ

n
i+1,j − χni−1,j)

−(ψni+1,j − ψni−1,j)(χ
n
i,j+1 − χni,j−1)] + e[(Kn

i+1,j)
2 − (Kn

i−1,j)
2]/y2

i,j . (17)

Here, (i, j) labels a mesh point, n the time level, ∆x is the axial step size, ∆y is the
transverse step size, ∆t is the time step, d = ∆t/(4∆x∆y) and e = ∆t/(8∆x). The time
step has been chosen such that the Courant number C = ∆t/∆x < 1.0 to ensure
that the scheme is numerically stable. At each time level, an iterative point relaxation
algorithm based on a central-difference scheme has been implemented to solve the
Poisson equation, ψyy + ψxx/2y = −χ, for the stream function ψ. For an iteration
number k we use

(ψni,j)
k+1 = (ψni,j)

k −
(Gni,j)

k

(∂Gni,j/∂ψ
n
i,j)

k
,

where

Gni,j =
1

(∆y)2
(ψni,j+1 − 2.0ψni,j + ψni,j−1) +

1

2yi,j(∆x)2
(ψni+1,j − 2.0ψni,j + ψni−1,j) + χni,j

and ∂Gni,j/∂ψ
n
i,j is computed from Gni,j . The level of accuracy of solving the Poisson

equation is measured by maxi,j |(Gni,j)k| < τ = 10−5 for each time level n, which for the

∆x and ∆y used here results in maxi,j |(ψni,j)k+1 − (ψni,j)
k| < 10−8 for each time level n.

It is found that changing τ to lower values only increases the number of iterations
but does not affect the numerical solution of the flow dynamics. The entire numerical
method is explicit, first order in time and second order in space. Starting from an
initial state which is a perturbed columnar flow given by

ψ(x, y, 0) = ψ0(y) + δ sin

(
πx

2x0

)
sin(2πy),

χ(x, y, 0) = −ψ0yy + δA(y) sin

(
πx

2x0

)
sin(2πy),

K(x, y, 0) = K0(y) +
δK0y

ψ0y

sin

(
πx

2x0

)
sin(2πy),


(18)

where A(y) = (2π)2 + (π/2x0)
2/(2y), we use the above numerical scheme to integrate

the solution in time and space.
We investigated the sensitivity of the numerical solutions to grid refinement and

time step reduction. We concentrated on a Burgers vortex with β = 4.0 in a domain of
length x0 = 6.0. Two special test cases where ω = 0.7, δ = −0.1 and ω = 1.0, δ = −0.1
were investigated. Detailed discussions on these cases are given later in this section.
In the first case, the flow is initially perturbed near the pipe centreline and the
disturbance decays in time (see figure 4a), whereas in the second case the disturbance
evolves into a breakdown solution (see below figure 8). Uniform meshes of 200 by 30
points and 400 by 60 points in the x- and y-directions, respectively, were used in the
grid refinement analysis. Similar mesh step sizes were also used by Beran & Culick
(1992), Beran (1994), Lopez (1994) and Tromp & Beran (1996, 1997) in their Navier–
Stokes simulations of high-Reynolds-number flows and showed solutions insensitive
to grid refinement. We find that a uniform mesh of 200 by 30 points provides
sufficient accuracy for steady-state computations when compared with steady-state
computations using more refined meshes of 400 by 60 points. The maximum absolute
value of the variation of ψ and K at points in the flow field is no more than about
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3%. It should be pointed out, however, that in the cases where large separation zones
appear, variations of about 10% were found in the scaled azimuthal vorticity field,
χ. Similar sensitivities of the numerical calculations was found in the simulations of
Lopez (1994). It should also be emphasized here that a good correlation is found
between the decay rate of a small disturbance when ω < ω1 and the theoretical
prediction of Wang & Rusak (1996a) (see figure 5). Moreover, the time-asymptotic
states of the present simulations always show a good correlation of the downstream
outlet flow with the outlet state predicted by the theoretical approach described above
(see an example in figure 7). These points provide great confidence in the present
calculations.

A Courant number, C = 0.66, was used in all of the computations. Numerical
results for the above-mentioned test cases showed nice correlation with a case where
the time step was reduced by one half. On the other hand, when C is increased to
around 1.0 we find numerical instability problems. Our experience shows that the
value C = 0.66 is found to be around an optimal value for efficient computations.
The length of the pipe has also been varied and the steady-state results are quite
similar for any x0 > 3.0. It should be clarified, however, that, according to our theory,
increasing the pipe length to infinity should result in convergence of the outlet flow
profile to the theoretically predicted columnar state found as a solution of (11).

Several values of ω have been considered with β = 4.0 and x0 = 6.0. Other cases
can be studied in the same way. To illustrate the nature of the solutions found, time-
history streamline contours of ψ(x, y, t) for various values of ω and δ are presented in
figures 4(a), 4(b), 6(a) and 8–11. In each frame in these figures, the lower streamline
represents the pipe centreline (also the x-axis) and along this line ψ = 0, the upper
streamline represents the pipe wall and along this line ψ = 0.5, the vertical axis is the
y-axis, the flow runs from left to right and lines of constant ψ (with values ψ = 0.0,
0.001, 0.012, 0.025, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5) are presented.

(i) ω = 0.7: in this case ω < ω0 = 0.7305 and the base columnar flow is uncon-
ditionally stable to any axisymmetric disturbance. Starting with an initial state (18)
with δ = −0.1 we can see (figure 4a) that the disturbance is convected downstream
for all time, where some nonlinear effects are evident from the change of the shape
of the wave in time. After about 38.0 time units, rt/w0 (where rt is the pipe radius
and w0 = ψ0y), the flow returns to a columnar state and stays there as expected. To
demonstrate the unconditional stability of the base columnar flow we also investigate
the case where the initial disturbance is much larger, δ = −0.2, and includes a re-
versed flow region (see figure 4b). We find that even the larger disturbance is relatively
quickly convected downstream out of the computational domain and, again, the flow
returns to a steady columnar state after about 57.0 time units.

The convergence to a columnar state in these cases is also demonstrated by the
time-history plots of a norm of the difference of the temporal solution from the
columnar state, defined as ∆n

ψ = maxi,j(|ψni,j − ψ0j |) (see figure 5). Here, ψ0j = ψ0(yj).
It can be seen that in the two cases for ω = 0.7 the dynamics of the disturbance is
similar: after a nonlinear transient and when the perturbation becomes sufficiently
small, ∆n

ψ decays exponentially, ∆n
ψ ∼ exp(−σt), and with almost the same rate of

decay σ. This behaviour is predicted by the stability analysis of Wang & Rusak
(1996a). For β = 4.0, x0 = 6.0 and swirl level ω = 0.7 we find σ ∼ −0.208w0/rt.

(ii) ω = 0.8: in this case ω0 = 0.7305 < ω < ω1 = 0.8845 (here we used (15) to
compute ω1) and the flow may develop into one of two possible steady-state solutions,
depending on the size of the initial disturbances. When δ = −0.02 (a relatively small
disturbance) the disturbance is convected downstream as the linear stability theory
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Figure 4. Time-history plots of stream function ψ(x, y, t) for the pipe flow when ω = 0.7 and
(a) δ = −0.1, (b) δ = −0.2.

of Wang & Rusak (1996a) predicts, and after about 38.0 time units the flow returns
to a columnar state, as expected. The convergence to a columnar state in this case is
demonstrated by the time-history plots of a norm ∆n

ψ (see again figure 5). When the
perturbation becomes sufficiently small it decays exponentially with a rate of decay
σ ∼ −0.069w0/rt.

The comparison of σ for ω = 0.7 and 0.8 shows that the decay rate decreases as
the swirl is increased toward the critical swirl, ω1 = 0.8845. Now, assuming that the
decay rate for a small disturbance from a columnar state changes approximately as
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σ = Cσ1∆Ω + Cσ2(∆Ω)2 + ..., where ∆Ω = ω2 − ω2
1 , we can use the results for σ at

ω = 0.7 and 0.8 to find Cσ1 ∼ 0.270 and Cσ2 ∼ −1.509 (for a Burgers vortex with
β = 4.0 and pipe length x0 = 6.0). This result matches nicely with the asymptotic
formula of Wang & Rusak (1996a, equation 50) for

Cσ1 =
( σ

∆Ω

)
∆Ω→0

=
π2w0

8x0ω
2
1

= 0.263

as well as the prediction of the loss of stability of a columnar vortex as ω approaches
the critical swirl.

However, when δ = −0.1 (a relatively large perturbation) we can see from the
time-history plots of the functions ψ(x, y, t), as well as k(x, y, t) and χ(x, y, t) (figure 6a,
b, c) that nonlinear effects become dominant and a solitary wave is created at about
57.0 time units. This solitary wave is moving upstream when 57.0 < t < 133.0 and is
then convected downstream (133.0 < t < 209.0) and its amplitude subsides. At about
247.0 time units a standing nonlinear wave appears, grows in size, and develops into
an almost stagnant zone at about 285.0 time units. The wave of nearly stagnant flow
moves upstream toward the inlet until it reaches a steady state at about 430.0 time
units and stays there, as expected. It is clear that the long stagnation zone starts at
a distance of about one radius from the inlet, and the flow is almost columnar after
about three radii from the inlet. Also, notice the nice correlation between the states
described by the stream function ψ and the circulation function k all over the time
history and specifically when the stagnation zone appears and develops to steady state
(figures 6a and 6b). Moreover, notice the correlation between the stream function ψ
and the scaled azimuthal vorticity function, χ, near the nose of the separation zone
as it develops to steady state as well as the establishment of large negative azimuthal
vorticity, η = (2y)1/2χ, ahead of the stagnation point and in the surroundings of the
separation line (see figures 6a and 6c). Similar behaviour of the azimuthal vorticity is
also described in Lopez (1994).

This axisymmetric evolution can be observed in Sarpkaya’s (1971) experiments and
also in the recent experimental studies of Bruecker & Althaus (1995) and Malkiel
et al. (1996). The growth of the axisymmetric breakdown in the experiments can be
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associated with an unstable axisymmetric eigenmode disturbance near the pipe inlet
and the upstream propagation of this disturbance.

The time-asymptotic state describes a transition along the pipe axis from the given
inlet flow, that is significantly deflected in the radial direction, to a columnar state
along most of the pipe. This state is similar to the semi-infinite open breakdown zones
found by Sarpkaya (1995a,b) in swirling flows at high Reynolds numbers. The outlet
states found for various pipe lengths, x0 = 6.0 and 12.0, are described in figure 7 (a
mesh of 400 by 30 grid points in the x- and y-directions, respectively, was used in the
case where x0 = 12.0). The computed outlet states are all close to the global minimizer
solution of (13) with a stagnation zone as found in §3 for ω = 0.8 and β = 4.0 (see
figure 7). According to the theory, when x0 is increased the outlet flow state should
tend to the global minimizer solution of (13), and this is also demonstrated in
figure 7.

(iii) ω = 1.0: in this case ω > ω1 = 0.8845 and the base columnar flow is unstable
to axisymmetric disturbances. It is expected that the disturbances will grow and the
flow may develop into a steady-state solution of a swirling flow around a stagnation
zone. Starting with an initial state (18) with δ = −0.1 we can see (figure 8) that
the disturbance grows in time as a complicated nonlinear wave that tends to travel
toward the inlet. From about 13.4 time units the wave front stays near the inlet and
accumulates into a large stagnation zone that reaches a steady state after about 95.0
time units, as expected.

To demonstrate the absolute instability of the base columnar flow we also investi-
gated the case where the initial disturbance is much smaller, δ = −0.02 (see figure 9).
We find that the disturbance first grows according to the linear theory (see state at
time t = 19.0). When the disturbance is sufficiently large, nonlinear effects become ev-
ident and it is reshaped into a solitary wave near the inlet (see state at time t = 95.0).
The wave continues to grow in time and evolves after about 437.0 time units into
a steady state with a large stagnation zone that is similar to the steady state found
when δ = −0.1, as expected. We believe that the small differences between the steady
states found for δ = −0.02 and δ = −0.1 should be attributed mostly to numerical
inaccuracies in the time integration of the two solutions that are specifically noticeable
when a line ψ = 0.001 (very small value) is described to represent the separation zone.
It is also clear that the nose of the long stagnation zone found in the steady-state is
close to the inlet and the flow is almost columnar after about two radii from the pipe
inlet. Again, the steady-state solution describes a transition from the given inlet flow,
that is strongly deflected in the radial direction, to a columnar state along most of
the pipe that is close to the global minimizer solution of (13) with a stagnation zone
as found in §3.

Again, this axisymmetric evolution can be observed in Sarpkaya’s (1971) experi-
ments and the time-asymptotic state is similar to the semi-infinite open breakdown
zones found by Sarpkaya (1995a,b) in swirling flows at high Reynolds numbers and
to the states found numerically by Lopez (1994).

It should be pointed out here that as δ is reduced it takes more time for the flow
to evolve to the steady breakdown state. According to the stability analysis of Wang
& Rusak (1996a) we expect that even truncation error in the numerical integration
process is sufficient to excite this instability. Our experience shows that when ω = 1.0
values of δ as low as −0.005 result in steady breakdown solutions; however, it takes
an extremely long computation (more than 10 000 time units rt/w0) to derive them.

It should also be pointed out here that the theory of Wang & Rusak (1997a) predicts
the existence of a branch of local minimizer non-columnar flow solutions when
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Figure 6(a). For caption see facing page.

ω > ω1, in addition to the branch of axisymmetric breakdown states demonstrated
above. This branch bifurcates at ω1 and the solutions describe accelerating flows in the
pipe with a reduced vortex core at the pipe outlet. According to the stability analysis of
Wang & Rusak (1996b) these solutions are linearly stable but their margin of stability
becomes smaller as ω approaches ω1. Our numerical experience with the dynamics of
perturbed columnar swirling flows according to (1)–(6) and (18) shows that whenever
ω > ω1 and δ < 0 (the initial disturbance creates a flow deceleration) the flow always
evolves into the breakdown states and we never found an evolution into the local
minimizer non-columnar states. Therefore, we may conclude that these solutions are
not physically realizable and the breakdown solutions dominate when ω > ω1.

(iv) Breakdown solutions when ω0 < ω < ω1: in this section we study the nature
of the breakdown solutions as the swirl level of the incoming flow is reduced from
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Figure 6. Time-history plots for the pipe flow when ω = 0.8 and δ = −0.1 (a) stream function
ψ(x, y, t), (b) circulation function k(x, y, t) (lines of constant k with values k = 0.0, 0.005, 0.045, 0.08,
0.12, 0.16, 0.20, 0.25, 0.35, 0.45, 0.55, 0.65,0.75) and (c) χ(x, y, t) (lines of constant χ with values
χ = −10.0, −8.0, −6.0, −4.0, −3.0, −2.0, −1.0, −0.5, −0.25, −0.1, 0.0).
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Figure 7. Comparison of outlet state from solution in figure 6(a) and the solution of (13) using a
stagnation model.

ω = 0.8 to ω0 + ε(x0) (where, for β = 4.0, ω0 = 0.7305). We start from the steady
breakdown solution found at ω = 0.8 as an initial state, where at time t = 0 we
reduced ω along the inlet section to 0.79. The flow develops after about 40.0 time
units into the steady breakdown solution that corresponds to ω = 0.79. We can see in
figure 10 that this solution describes a stagnation zone that is slightly smaller than the
zone in the case where ω = 0.8 and its leading point is convected downstream. Using
this procedure of computations, we further reduced the incoming swirl ω to 0.78 and
then to 0.77 (see figure 10). We again see that the stagnation zone becomes smaller, its
leading point moves downstream, and the inlet radial flow is significantly reduced as ω
is reduced. This behaviour matches with the theoretical predictions of the properties
of the global minimizer solution in this range of ω as discussed in Wang & Rusak
(1997a). As we continue to reduce ω to 0.76 we find a steady-state solution after
about 80.0 time units. In this case the nose of the stagnation zone moves significantly
downstream to two and a half radii from the inlet and the inlet flow is very close to a
columnar state (see figure 10). This indicates that the swirl level ω = 0.76 is close to
ω0 + ε(x0). Further reduction of ω to 0.75 results in a motion of the stagnation zone
toward the outlet. It disappears from the computational domain after about 300.0 time
units and the flow returns to a steady columnar state (see figure 11). This confirms
that there exists a turning point of swirl of the branch of axisymmetric breakdown
solutions between 0.76 and 0.75. We now can estimate that ε(x0) ∼ 0.025 when
x0 = 6.0. According to the theory, as x0 is increased ε(x0) becomes much smaller.

The process described here demonstrates that the bifurcation swirl level ω0 is a
point of exchange of stability for the branch of axisymmetric breakdown states, i.e.
they are stable when ω > ω0, become neutrally stable at ω = ω0 and are unstable and
will not exist as time-asymptotic states when ω < ω0. Moreover, from a dynamical
perspective, ω0 is the critical level of swirl for large-amplitude axisymmetric waves in
a swirling flow. When ω < ω0 such waves may appear but over time are convected
out of the flow domain. When ω > ω0 such waves may evolve into steady breakdown
zones. This special behaviour of large-amplitude disturbances and of the breakdown
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Figure 8. Time-history plots of stream function ψ(x, y, t) for the pipe flow when
ω = 1.0 and δ = −0.1.

states as swirl is reduced and, specifically, the loss of stability of the breakdown zone
as the swirl is reduced below ω0, is found in our experiments described in Malkiel et
al. (1996).

5. Discussion
This paper presents numerical computations of the evolution of an inviscid, axisym-

metric swirling flow in a finite-length pipe as described by the flow problem (1)–(7).
These computations are the first simulations in the study of the vortex breakdown
phenomenon that are guided by a consistent theory (Wang & Rusak 1997a). There-
fore, the results obtained here can be considered reliable and help to demonstrate the
predictions of the theory. We summarize the main results.

(i) The simulations demonstrate the relation between stability and criticality of
columnar swirling flows and provide insight into the mechanism leading to the
axisymmetric vortex breakdown phenomenon as predicted by the theory of Wang
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Figure 9. Time-history plots of stream function ψ(x, y, t) for the pipe flow
when ω = 1.0 and δ = −0.02.

& Rusak (1996a,b, 1997a). It is found that, indeed, supercritical columnar swirling
flows with a swirl level less than the critical level, ω1, are stable to small axisymmetric
disturbances whereas subcritical columnar swirling flows with a swirl level greater than
the critical level, ω1, are unstable to axisymmetric disturbances. It is also interesting
to notice that the rate of decay of small axisymmetric disturbances in supercritical
swirling flows computed from the numerical simulations matches nicely with the
asymptotic formula of Wang & Rusak (1996a, equation 50).

(ii) The computations shed light on the nonlinear dynamics of axisymmetric swirling
flows. It is demonstrated that for the initial conditions studied in this paper, columnar
swirling flows with a swirl level less than the threshold level ω0(< ω1) are uncon-
ditionally stable to any axisymmetric disturbance. In the range ω0 < ω < ω1 it is
demonstrated that, depending on the size of the initial disturbances, the flow may
evolve into one of two distinct steady states. When the disturbances are sufficiently
small they will decay in time and the flow will return to a columnar state. However,
when the initial disturbances are large enough, they will grow in time and evolve
nonlinearly into a large stagnation region. When ω > ω1, it is demonstrated that the



The breakdown of a perturbed vortex in a pipe 233

0.4

0.2
ö = 0.80

0.4

0.2

0.4

0.2

0.4

0.2

0.4

0.2

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

0.79

0.78

0.77

0.76

Figure 10. Time-asymptotic solutions of the stream function ψ(x, y, t) for various levels of swirl.

0.4

0.2

0.4

0.2

0.4

0.2

0.4

0.2

0.4

0.2

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

t = 0

57.0

114.0

190.0

304.0

Figure 11. Time-history plots of stream function ψ(x, y, t) for the pipe flow when ω is reduced
from 0.76 to 0.75 at t = 0.



234 Z. Rusak, S. Wang and C. H. Whiting

initial disturbances studied grow and evolve again into a vortex breakdown solution.
This special behaviour of rotating flows has been predicted by our theory which the
simulations serve to clarify. This dynamical behaviour is also similar to that described
in the experimental studies of Sarpkaya (1971) and Malkiel et al. (1996).

(iii) The present inviscid and time-dependent simulations of (1)–(7) do not use
any continuation model in order to establish a separation zone. Starting from the
initial disturbances, the inviscid flows evolve uniquely in time and the stagnation zone
naturally appears in the flow when a time-asymptotic state is reached. As a result,
the computations provide strong evidence that, within the inviscid and steady-state
framework, while looking for solutions of the Squire–Long equation, the stagnation
model is the relevant model to be used to describe a separation zone. Therefore,
the computation of breakdown solutions of the SLE (8) with boundary conditions
(9) should use this methodology. Such behaviour is also consistent with the results
of viscous numerical simulations in high-Reynolds-number flows, experimental data
about the flow nature inside the breakdown zones and matches the expected behaviour
of viscous axisymmetric separation zones in the inviscid limit case.

(iv) We have shown in our analysis of solutions of the SLE(8), (9), that there exists
a threshold value of swirl, ω0, where breakdown solutions can be found only when
ω > ω0 and where these solutions are global minimizer solutions of the equation.
We have also shown that these solutions are strongly related to global minimizer
solutions of the ODE (11) resulting from the SLE and that the value of ω0 is found
when the global minimizer solution of the columnar problem is no longer the base
flow. However, in this ODE framework the value of ω0 depends on the choice of
a continuation model. The present computations clarify that using the stagnation
model in the search for solutions of the columnar problem (11) is indeed the relevant
way of computing ω0 as has been suggested by Wang & Rusak (1997a).

(v) The present simulations construct the global minimizer solutions of the SLE
(8), (9) when ω > ω0 + ε(x0) from the dynamical process given by (1)–(7). This
branch describes breakdown solutions which are stable to axisymmetric disturbances
for any ω > ω0 + ε(x0). However, as the inlet swirl is decreased toward ω0 + ε(x0)
the solutions describe a stagnation zone whose nose tends to move downstream
toward the pipe outlet and the margin of stability of those solutions becomes smaller.
When ω < ω0 + ε(x0), no standing wave can be sustained in the flow and the
branch of breakdown solutions ceases to exist. It should also be pointed out that
our computations show that the branch of min-max solutions of the SLE (8), (9) in
the range ω0 + ε(x0) < ω < ω1, that connects the branch of columnar solutions with
the branch of breakdown solutions, cannot be accessed from the dynamical process
described by (1)–(7). This result matches with the theoretical predictions of Wang &
Rusak (1996b) that these solutions are unstable to axisymmetric disturbances.

(vi) It should be pointed out that the numerical simulations of Lopez (1994) using
the axisymmetric, time-dependent Navier–Stokes equations, also show that for suffi-
ciently high Reynolds numbers, the separation zones in breakdown solutions become
longer and essentially regions of stagnant flow as Reynolds number is increased.
These zones are similar in nature to those found in our inviscid computations. More-
over, the size of the separation zones in the viscous computations of Lopez (1994)
is comparable to that predicted by our analysis using solutions of the ODE (11).
Lopez (1994) also suggested that viscous dissipation is responsible for closing the
separation zone, not the downstream boundary condition. This suggests that in the
inviscid limit of viscous calculations the axisymmetric breakdown zone will become
longer and an open separation zone will appear, as predicted in our inviscid theory
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of Wang & Rusak (1997a). Furthermore, Lopez (1994) showed that the level of swirl
above which breakdown solutions can be found (his secondary limit point) for an
inlet Burgers vortex with β = 4.0 tends to a certain value V = 1.466 as the Reynolds
number is increased. Using our method of computing ω0 we find that the threshold
value for the appearance of inviscid breakdown solutions for a very long pipe, in the
scale of Lopez’s (1994) or Beran & Culick’s (1992) computations V = 2ω, is 1.461
which is in very good agreement with the viscous computations. This demonstrates
the nature of the swirl level, ω0 (of Keller et al. 1985), as a critical swirl related to the
secondary limit point found in the Navier–Stokes computations of Beran & Culick
(1992), Beran (1994) and Lopez (1994).

(vii) The details of the computations described in figures 4–11 provide insight
into the dynamics of both small- and large-amplitude waves in a swirling flow.
When the disturbances are sufficiently small, the linear theory may apply and base
columnar flows can be classified as supercritical when ω < ω1 and subcritical when
ω > ω1. Supercritical swirling flows can sustain only small-amplitude waves that
travel downstream. On the other hand, subcritical swirling flows allow small-amplitude
waves to travel upstream and due to the interaction with the inlet flow state they
become unstable and grow. When large-amplitude disturbances are imposed on the
flow at the initial state, the behaviour is more complicated and is related with the
nonlinear effects. Supercritical swirling flows with ω < ω0 can sustain only large-
amplitude waves that travel downstream. However, when ω > ω0, the swirling flow
allows large-amplitude waves to travel upstream and create a large standing wave
with a stagnation zone. From this dynamical perspective, ω0 is the critical level of
swirl for large-amplitude axisymmetric disturbances in a swirling flow. The dynamical
behaviour of small- and large-amplitude disturbances described here matches nicely
with available experimental data.

(viii) We also want to point out that nonlinear effects tend to reshape the initial
disturbances after some time into solitary waves that travel in the flow and we may
find for a certain time period flow states that are close to the states described by
the min-max solutions. However, those states continue to develop in time and either
travel downstream and out of the flow domain (see figures 4a, 4b), or evolve into a
large amplitude standing wave with a stagnation zone (see figures 6, 8 and 9). The
certain transient states where small-amplitude solitary travelling waves appear in the
flow may be described by a weakly nonlinear analysis similar to the theory of Randall
& Leibovich (1973).

It can be concluded that the axisymmetric vortex breakdown process in high-
Reynolds-number flows in a straight pipe is the evolution, that occurs only when
ω > ω0, from a columnar vortex flow, that loses its stability when ω is near or
above ω1, into another steady and stable (supercritical) global minimizer state that
is a strong attractor. This inviscid equilibrium state describes an almost stagnant
zone in the flow. This state is a spatial transition from a given swirling flow along
the inlet, that is deflected in the radial direction, to a columnar (supercritical) state
described by the global minimizer solution of the columnar Squire–Long equation
when ω > ω0. When ω0 < ω < ω1 only finite perturbations of the order of ω1−ω will
induce this transition process, whereas when ω > ω1, any perturbation will induce this
transition. Figure 3 provides the guiding criteria for the appearance of axisymmetric
vortex breakdown in a Burgers vortex coming into a pipe and figure 1 provides the
downstream columnar state of the inviscid breakdown solution and the characteristic
size of the breakdown zone. The information in figures 1 and 3 can be used in
any future computations of vortex breakdown in Burgers vortex flows in a pipe. The
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method described in this paper can be used to calculate similar criteria for any swirling
flow of engineering interest. For example, such recent calculations of the breakdown
characteristics of a Q-vortex in a pipe and their correlation to experimental data are
reported in Rusak, Whiting & Wang (1997). The present paper also demonstrates
the relation between several previous approaches to explain the vortex breakdown
phenomenon. It connects between the recent results on hydrodynamic stability (Wang
& Rusak 1996a,b), the critical state theory of Benjamin (1962), the bifurcation analysis
of Leibovich & Kribus (1990), the stagnation zones approach of Keller et al. (1985)
and the Navier–Stokes solutions of Beran & Culick (1992), Beran (1994) and Lopez
(1994).
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